
Introduction

Assessing variation in ecologically relevant traits 
to better understand niche dates back to Hutchinson 
(1959). Since then a multitude of studies have examined 
niche separation in numerous vertebrate taxa, including 
family level studies such as Anolidae (Schoener, 1970; 
Roughgarden, 1995), Fringillidae (Zeng and Lu, 
2009), Muridae (Millien-Parra and Loreau, 2000), and 

Varanidae (Pianka, 1986). Concerning ecomechanical 
traits (Wainwright, 1991), bite force has received 
widespread attention with respect to dietary niche. 
Maximum bite force is expected to relate causally to 
food type (D’Amore et al., 2011), maximum size (Wroe 
et al., 2005), or hardness (McCurry et al., 2015). Studies 
have looked at how increases in bite force allow species 
to occupy different, usually durophagous, niches (Mara 
et al., 2010; Schaerlaeken et al., 2012). Bite force 
has also been used as a dimension to facilitate niche 
partitioning between sympatric species (Herrel et al., 
2001a; Verwaijen et al., 2002; Measey et al., 2011). 

Bite force functions as an ideal ecomechanical variable 
to explore concerning systems where the explanations 
for niche separation are unresolved. Western Australian 
skinks (Infraorder Scincomorpha) are an excellent 
example of this. Over 420 species of skinks occur in 
Australia alone (Wilson and Swan, 2013; Cogger, 
2014). Several skink species often co-occur in their 
respective environments, and one can find up to 40 
species occurring together in the deserts of Australia 
(Pianka, 1969a). Several hypotheses have been put 
forward to explain how skinks achieve such high levels 
of sympatric diversity there. Place, food, and time are 
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potentially the most substantial niche dimensions, 
allowing for minimal ecological distances between 
sympatric species (Pianka, 1969a,b). Others have stated 
that the nature of spinifex (genus: Triodia) grasslands is 
ideal for lizards to flourish and diversify (Morton and 
James, 1988). Skinks are often seen as opportunistic 
generalists, and any dietary differentiation is often subtle 
and distinguishable only at the prey’s generic level 
(James, 1991a). These unspecialized diets, compounded 
with variable juvenile mortality and reproductive success 
(James, 1991b; Read, 1998), may reduce niche overlap 
to the point of eliminating competition.  Some argue the 
food supply may be ‘super abundant’ and eliminate any 
need for dietary niche separation (Twigg et al., 1996). 
On the other hand, niche separation may be primarily 
facilitated by habitat/microhabitat use (often attributed 
to increased environmental heterogeneity) and variation 
in peak foraging times (Goodman, 2007; Goodman et 
al., 2008; Pianka, 1969a; Twigg et al., 1996). 

Niche separation is often facilitated by divergence in 
one or more specific, ecologically relevant physical or 
behavioral trait(s) (Brown and Wilson, 1956; Losos, 
2000).  It is also possible that consistent allometric 
growth patterns may achieve a similar end.  Size 
differences within sympatric species could facilitate 
disproportionate character changes in a consistent, 
predictable fashion, and these allometric character 
changes would result in niche separation. This has 
been seen ontogenetically in a number of species 
where allometric changes in bite force allow for niche 
transition with age and size (Binder and Valkenburgh, 
2000; Erickson et al., 2003; Herrel et al., 2006; Pfaller 
et al., 2011). 

The purpose of this study is to determine if changes 
in body size correlated to bite performance could 
function as a mechanism for niche separation within 
a sympatric group of vertebrates.  We determine if 
bite force potentially allows for niche partitioning 

through allometric change across sympatric species. 
We surveyed the bite forces of wild caught skinks from 
the Kimberley region of Western Australia, along with 
masses and a number of morphological measurements. 
We hypothesize that bite force, when scaled against 
body size and morphological traits, will display a 
significant, positively allometric trend. We also provide 
description of skink morphological variability. This pilot 
study will allow researchers to better test the role of bite 
force in niche partitioning within complex multispecific 
communities in the future. 

Materials and Methods

Location and Measurements.—Fieldwork was 
conducted during June, 2013 at the El Questro 
Wilderness Park in the East Kimberley region of 
Western Australia. A total of 43 individuals of 5 species 

Figure 1. Phylogeny of skink species captured in this study. 
Branches are scaled based on branch lengths modified from 
Pyron et al. (2013). Species include (A) Carlia triacantha, 
(B) Cryptoblepharus metallicus, (C) Ctenotus inornatus, (D) 
Ctenotus robustus, and (E) Eremiascincus isolepis. Scale = 1 
cm.  Photos by D. Meadows.
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Table 1. Number of skink individuals that were caught, and those that produced usable bite force data.  1 
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Skink species Number caught Number bit 

Carlia triacantha 2 2 

Cryptoblepharus metallicus 11 8 

Ctenotus robustus 15 12 

Ctenotus inornatus 10 9 

Eremiascincus isolepis 5 5 

Table 1. Number of skink individuals that were caught, and 
those that produced usable bite force data�.



of skink were captured in a two-week period, and 36 
produced usable bite force data (Table 1). Species 
captured were all members of Lygosominae (Pyron et 
al., 2013), comprising of Carlia triacantha (Mitchell, 
1953), Cryptoblepharus metallicus (Boulenger, 1887), 
Ctenotus inornatus (Gray, 1845), Ctenotus robustus 
(Storr, 1970), and Eremiascincus isolepis (Boulenger, 
1887) (Fig. 1). Skinks were collected from four isolated 
trapline fences located throughout the park in areas of 
variable moisture and shade-cover, in concert with an 
ongoing study of the herpetofauna in this region (Doody 
et al., 2014, 2015a,b,c). Each fence consisted of both pit 
and funnel traps located equidistant along both sides of 
an upright tarp, and were checked and cleared daily at 
dawn. Upon capture, we field identified each skink to 
species and brought them back to the campsite for data 
collection. Body size was a proxy for age, and sex was 
not determined due to a lack of field adequate probing 
equipment. After all data collection was completed, we 
released each skink at its capture location.

We collected bite force (BF) data on the day the animal 
was captured within the same two-hour period to avoid 
variability in duration between capture and sampling. 
We measured BF with a Flexiforce sensor (Tekscan 
Inc., South Boston, MA.), which is a piezoresistive 
force sensor that fit into the skink’s mouth. There were 
two separate sensors; with or without a wooden brace 
glued to the underside. The wooden brace was for the 
larger skinks. Lappin and Jones (2014) showed that the 
substrate of the transducer may bias the force produced. 
Unfortunately, there was no way to produce a uniform 
substrate in the field; small skinks could not fit the 
wooden brace in their mouth, and large skinks bit directly 
through a transducer without a brace. Each sensor was 
calibrated separately. The instruments recorded data 
at eight times per second, and all force measurements 
are in Newtons (N). BF was collected by holding the 
animal and approaching it with the transducer. Care 
was taken to ensure that the rostrum of the animal made 

direct contact with the center of the transducer during all 
trials. Many skinks were eager to bite when approached 
with the transducer, whereas others were encouraged to 
bite with gentle taps on the nose that readily induced 
defensive bites. Consecutive attempts were made to 
induce a single specimen to bite, until five usable bite 
force measures were collected from each. The maximum 
value out of these was used as BF. 

Body Mass (BM) was measured using Pesola scales to 
the nearest 0.5 grams. Euclidean linear measurements 
included Body Length (BL), Head Length (HL), Head 
Width (HW), Forelimb Length (FLL), Hindlimb Length 
(HLL), and Tail Length (TL) (sensu Herrel et al., 1999a; 
Herrel et al., 2001a, 2002; Irschick et al., 2005; Lappin 
et al., 2006, Tulli et al., 2011, 2012). Multiple dorsal-
perspective pictures were taken of each skink in a clear 
container (with a scale) with a Canon EOS Rebel T3 
with an 18-55 mm lens. Lines were drawn on the dorsal-
perspective photographs using the “draw curves” tool 
in the landmark software TpsDig2.6 (Rohlf, 2010). We 
then resampled the lines to 15 equidistant points, and 
the final measure was the sum distance between these 
points. BL was measured from the tip of the rostrum, 
along the midline to the caudal-most point where the 
hind legs meet the body.  Note that BL approximates the 
standard measurement snout-vent length (SVL), but is 
measured on the dorsal surface (SVL is measured on the 
ventral surface). FLL and HLL were measured from the 
proximal-most point of the limb to the distal-most point 
on the longest digit (digits III and IV respectively). HL 
is defined as the midsagittal distance from the tip of the 
rostrum to the junction between the parietal/interparietal 
scales and the nuchal scales on the dorsal head shield 
(see Wilson and Swan, 2013). HW was the widest part 
of the head. TL started from where BL ceased to the 
tip of the tail. Skinks autotomize their tails to elude 
predators (for a review see Bateman and Fleming, 2009). 
The variable size of regrown tails could influence the 
results, so tails that were clearly regrown (indicated by 
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Table 2. Mean (and standard deviation) of skink morphology and performance. BM = body mass; BL = body length; FLL = fore-limb length; HLL = hind limb 9 
length; HW = head width; HL = head length; TL = tail length; BF = bite force. 10 
 11 

Skink species BM (g) BL (mm) FLL (mm) HLL (mm) HL (mm) HW (mm) TL (mm) BF (N) 

Carlia triacantha 2.75 (1.06) 44.81 (6.19) 11.84 (0.82) 19.20 (0.96) 8.92 (0.37) 7.81 (1.05) – 0.41 (0.41) 

Cryptoblepharus metallicus 1.00 (0.50) 35.70 (6.93) 10.63 (1.96) 14.15 (3.06) 7.91 (1.44) 5.19 (0.94) 46.36 (10.51) 0.12 (0.10) 

Ctenotus robustus 16.60 (15.94) 90.53 (33.74) 19.99 (6.21) 32.44 (9.91) 15.04 (4.82) 11.64 (4.06) 176.11 (82.46) 3.74 (3.09) 

Ctenotus inornatus 5.40 (2.49) 63.99 (9.49) 14.93 (2.32) 24.51 (3.03) 12.42 (1.85) 8.84 (1.37) 138.83 (36.36) 1.26 (0.60) 

Eremiascincus isolepis 3.00 (1.84) 53.11 (9.91) 10.76 (2.52) 15.91 (4.23) 9.68 (1.80) 7.23 (1.48) 89.11 (54.05) 0.32 (0.23) 

Table 2. Mean (and standard deviation) of skink morphology and performance. BM = Body Mass; BL = Body Length; FLL = 
Forelimb Length; HLL = Hindlimb Length; HW = Head Width; HL = Head Length; TL = Tail Length; BF = Bite Force.



abrupt tapering and color changes) were omitted from 
statistical analyses.

Morphological and Bite Force Allometry.—Bivariate 
plots and linear regressions were generated using 
Microsoft Excel (v. 2010, Microsoft Inc. Redmond, 
WA.), using natural logarithm (ln) scaling. We performed 
all statistical analyses using SPSS (v. 17.0, SPSS Inc., 
Chicago, IL), and all regressions were reduced major 
axis (sensu Clarke, 1980). 

General morphological description of body dimensions 
of each species were depicted as standardized residuals 
for the purpose of comparison. The BL of each individual 
was regressed against the five remaining morphological 
variables similar to da Silva et al. (2014) where SVL 
was used as the standard. The resultant residuals were 
compared using a Multivariate Analysis of Variance 
(MANOVA) to determine if these relative differences 
were significant.   Carlia triacantha had an n = 2 (Table 
1) and was omitted from this statistical test.  TL was 
also excluded due to the high frequency of autotomy 
observed.

BF of all species was separately plotted against all 
morphological variables. In order to determine if there is 
a multispecific allometric relationship, the slope (m) of 
each bivariate regression was compared to an isometric 
coefficient similar to previous studies (Huxley, 1924; 
Thomason, 1991; Meyers et al., 2002; Erickson et al., 
2003). Isometric coefficients were based on the nature of 
the variables analyzed, and compared to these allometric 
coefficients. BM is a three-dimensional measure due to 
its dependence on volume, BF is a product of jaw muscle 
two-dimensional cross-sectional area, and all linear 
morphometrics are one-dimensional. Therefore, BF vs. 
BM would have an isometric coefficient of 2/3, and BF 
vs. BL would have 2/1.  A heterogeneity of slopes test, 
in the form of a modified t-test (as shown by Clarke, 
1980), was used to determine if the observed slope 
was significantly different from the relevant isometric 
coefficient.  A significant difference (P < 0.05) was 
taken to indicate allometry. 

Results

Masses for all species ranged from 0.5 to 44.0 grams, 
and the mean mass of C. robustus was an order of 
magnitude greater than all the other skinks (Table 2). 
All skinks had greater mean HLL than FLL, and greater 
HL than HW. TL was highly variable, and complete tails 
were unavailable for many individuals and all within C. 
triacantha.  Eremiascincus isolepis showed a noticeable 
reduction in limb dimensions (Fig. 2). HL was closely 

linked to HW in most species, except C. triacantha 
whose head was relatively short. Carlia triacantha 
also had the longest relative HLL and greatest relative 
mass for its length. Cryptoblepharus metallicus had the 
longest relative forelimbs. Ctenotus robustus, although 
largest in absolute mass, was smallest in relative mass. 
When normalized for by BL, morphological traits 
showed significant differences according to MANOVA 
[F (15, 91.50) = 3.458; P = 0.0001; Wilk’s Λ = 0.289].

Regression analysis demonstrates that BF was 
significantly correlated with all morphological 
parameters, but was best correlated with BM and BL 
(Fig. 3). All morphological variables had a relatively 
high r2 (> 0.7186) and significant P-values (<0.0001). 
Limb lengths were most weakly correlated with BF. 
Heterogeneity of slopes confirmed positive allometry in 
all regressions except for TL (Table 3), with significant 
differences indicated between the coefficients and the 
isometric model. The largest C. robustus individuals 
bit harder than all other skinks, but the other species 
overlapped with the smaller individuals. Larger C. 
inornatus individuals bit harder than C. triacantha 
and E. isolepis, and the latter two these species were 
overlapped by larger C. metallicus individuals.

Figure 2. Residuals of morphological variables for Carlia 
triacantha, Cryptoblepharus metallicus, Ctenotus inornatus, 
Ctenotus robustus, and Eremiascincus isolepis. Morphological 
variables were regressed against Body Length.
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Discussion

Bite force and feeding in Kimberley skinks.—Bite 
force in sympatric Western Australian skinks displayed 
significant positive allometry when scaled with most 
morphometric measures across species. We therefore 
fail to reject our hypothesis. Because body size varied 
between these skinks, allometric scaling exaggerated 
differences in BF between several species along this size 
gradient. This resulted in more separation than would be 
allowed for through isometry. The low sample size did 
not allow for any between-species comparisons, but, 

as a whole, bite force for these skinks was comparable 
to that of vertebrates of similar masses found in the 
literature (7−45g). These included several species of 
bats, fish, birds, and other lizards (Clifton and Motta, 
1998; Herrel et al., 2001b; Van der Meij and Bout, 2004; 
Santana and Dumont, 2009). 

 Allometric changes in bite force may allow for an 
increase in dietary breadth, potentially resulting in 
niche differentiation across both an ontogenetic and 
interspecific gradient.  Australian skinks are often 
described as dietary generalists, with a fair degree 

Figure 3. ln Bite Force (BF) plotted against ln of (A) Body Mass (BM), (B) Body Length (BL), (C) Forelimb Length (FLL), (D) 
Hindlimb Length (HLL), (E) Head Length (HL), (F) Head Width (HW), and (G) Tail Length (TL). The solid line indicates the 
reduced major axis regression for the observed data, and the broken line indicates the isometric model.
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of overlap in prey type as noted in the literature. The 
genera considered here eat a broad diet of similar types 
of arthropod food items, with a seasonal focus on 
Isoptera (Pianka, 1969b; Taylor, 1986; James, 1991a; 
Pough et al., 1997). Other major foods noted in the 
literature include Arachnida, Blattaria, Chilopoda, 
Coleoptera, Hemiptera, Isopoda, Orthoptera, and 
Thysanura (Twigg et al., 1996; Pianka and Harp, 2011; 
Manicom and Schwarzkopf, 2011). Jaw morphology 
influences several ecologically relevant behaviors in 
skinks, including prey selection (Pough and Andrews, 
1985; Andrews et al., 1987). As prey size increases, 
often so does durability and handling time of said prey 
(Pough et al., 1997; Herrel et al., 1999b; Meyers et al., 
2002). This usually requires a disproportionately larger 
biting mechanism, resulting in positive allometry with 
growth (Herrel et al., 2002; Herrel and Gibb, 2006). 
Prey items that were considered too ‘difficult’ to acquire 
now become accessible. 

Allometric bite force in skinks may play less of a role 
in increasing typical prey size, and instead function to 
increase the overall range of potential prey available. 
This has been seen in skinks outside the Kimberley. 
Niveoscincus increases maximum prey size as head 
length increases, however this upper extreme is only 
rarely exploited (Wapstra and Swain, 1996). We suspect 
that the Kimberley skinks may be similar; strong dietary 
overlap is typical, but larger individuals are able to 
supplement their diet with larger/more durable prey 
if necessary. For example, larger Ctenotus species are 
capable of eating relatively larger prey items (Pianka, 
1969b).  In particular, adult C. robustus consumes 
larger prey than both juveniles and smaller co-occurring 
congenerics (Archer et al., 1990). 

Other influences on morphology and dietary niche 
—Although bite force scaled allometrically with most 
morphological traits, TL was the only one that was 
isometric. This may indicate that TL also increased 
allometrically along a similar trajectory. This was 
further supported by the fact that TL showed a clear 

allometric slope of 1.451 (r2 = 0.9015, P < 0.0001) 
when plotted against a body size metric such as BL (as 
opposed to the predicted isometric slope of 1.00). This 
trajectory may be a response to increased dietary needs 
of larger skinks, or a display of maturity. Interestingly, 
head dimensions did not scale in such a way to suggest 
an allometric enlargement of the jaw apparatus. Bite 
force is often correlated with certain head dimensions, 
especially widths, because they are generally linked to 
jaw adductor size (Herrel et al., 2002; Huyghe et al., 
2009; Marshall et al., 2012). Not only did HW not 
scale isometrically with BF, it was slightly negatively 
allometric with BL (m = 0.886, r2 = 0.9644, P < 0.0001). 
There are several explanations for this. First, head 
dimensions may be heavily influenced by phylogeny, 
as seen in other Australian lygosomines (Poughe et al., 
1997). Alternatively, some selection pressure outside 
of feeding may antagonistically influence head sizes 
(Lappin et al., 2006). The degree of ossification of joints 
may also play a role as suggested for primates (Greaves, 
1988). 

Even with allometric scaling of bite force, overlap still 
exists between certain species.  Other factors most likely 
facilitate niche separation in these sympatric taxa. For 
example, C. triacantha and E. isolepis occupy a similar 
size range and therefore have a similar bite forces. 
But, these species rarely forage in similar habitats 
in the Kimberley and would not compete for prey. 
Eremiascincus isolepis is a sand-swimmer that forages 
in leaf litter (Wilson and Swan, 2013). On the other 
hand, Carlia species have an arboreal arthropod-based 
diet (Manicom and Schwarzkopf, 2011). Because there 
is no need to exploit prey in similar habitats, there is 
no need for a deviation in performance to partition said 
prey. Limb lengths may facilitate this spatial division, 
as short limbs (as seen in Eremiascincus) are often 
associated with a fossorial lifestyle (Wilson and Swan, 
2013). Limb lengths also correlated the least with bite 
force, indicating they are influenced by factors other 
than size and bite performance.

Table 3. Heterogeneity of slopes test, including both t-value and significance (P) values for observed ln-bite force versus ln-
morphological variables. BM = Body Mass; BL = Body Length; FLL = Forelimb Length; HLL = Hindlimb Length; HL = Head 
Length; HW = Head Width; TL = Tail Length.
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Table 3. Heterogeneity of slopes test, including both t-value and significance (P) values for observed ln-bite force 12 
versus ln-morphological variables. BM = body mass; BL = body length; FLL = fore-limb length; HLL = hind limb 13 
length; HL = head length; HW = head width; TL = tail length. 14 
 15 

 BM BL FLL HLL HL HW TL 

t = 4.358 3.929 4.144 3.631 4.920 4.488 1.032 

P = <0.0001 0.0002 <0.0001 0.0004 <0.0001 <0.0001 0.1591 
  16 

17 
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Previous researchers have argued being fossorial may 
restrict the biting apparatus in skinks (Andrews et al., 
1987). This appears to not apply to E. isolepis, as bite 
force plots similarly to the other skink taxa of similar 
sizes. This may be an influence of a similar diet, as 
Eremiascincus preys upon mostly beetles like most 
other skinks in the Kimberley (James and Losos, 1991). 
Other Australian sand-swimmers of the genus Lerista 
have reduced heads and jaws, and are limited to eating 
small, soft-bodied prey such as subterranean larvae 
(Pough et al., 1997; Greer, 1987; Greer, 1990; Lee et 
al., 2013). 

Increasing resource axes and future work.—The data 
reported here add bite force to the list of potential traits 
that influence the breadth of dietary niche in these 
skinks. Improving our understanding of this further 
requires; (1) an increase in sample to allow for between-
species effects and the consideration of phylogeny; 
(2) long-term measurement of diet selection for each 
species across size classes and (3) sampling of prey 
items that are spatially, temporally, and physically 
accessible to our focal animals. This will determine to 
what degree resource overlap occurs in these skinks, as 
well as determine to what extent they form a true guild. 
Traits of interest need to be measured for all species in 
the taxocene, allowing for a more thorough analysis of 
character displacement if present.  It is possible that 
bite force is associated with a head dimension that was 
not measured here (e.g. head height, relative rostral 
length). This creates a need to collect more fine-scaled, 
3D morphometric data on head shape in these skinks 
in the future (sensu McHenry et al., 2006; McHenry, 
2009; Walmsley et al., 2013).  Finally, the potential 
role of discrete morphological variation (e.g., sexual 
dimorphism) in traits relevant to niche use requires 
investigation (for examples in lizards see Vitt and 
Cooper, 1985; Vitt and Cooper, 1986; Lappin et al., 
2006).
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